\qquad
\qquad

Sirindhorn International Institute of Technology Thammasat University

Midterm Examination: Semester 1 / 2017

Course Title: ECS332 (Principles of Communications)
Instructor: Asst. Prof. Dr.Prapun Suksompong
Date/Time: October 4, 2017 / 12:00-14:00

Instructions:

> This examination has..... 6 pages (including this cover page).
> Conditions of Examination:
.............Closed book
(No dictionary, \square No calculator $\begin{aligned} & \text { Calculator (e.g. FX-991) allowed) }\end{aligned}$
.Open book

This sheet must be hand-written.
Do not modify (,e.g., add/underline/highlight) content on the sheet inside the exam room. It should be submitted with the exam.
Other requirements are specified on the course web site. (-10 pt if not following the requirements.)
$>$ Read these instructions and the questions carefully.
> Students are not allowed to be out of the examination room during examination. Going to the restroom may result in score deduction.
> Turn off all communication devices and place them with other personal belongings in the area designated by the proctors or outside the test room.
> Write your name, student ID, section, and seat number clearly in the spaces provided on the top of this sheet. Then, write your first name and the last three digits of your ID in the spaces provided on the top of each page of your examination paper, starting from page 2 .
$>$ The back of each page will not be graded; it can be used for calculations of problems that do not require explanation.
$>$ The examination paper is not allowed to be taken out of the examination room. Also, do not remove the staple. Violation may result in score deduction.
> Unless instructed otherwise, write down all the steps that you have done to obtain your answers.

- When applying formula(s), state clearly which formula(s) you are applying before plugging-in numerical values.
- You may not get any credit even when your final answer is correct without showing how you get your answer.
- Formula(s) not discussed in class can be used. However, derivation must also be provided.
- Exceptions:
- Problems that are labeled with "ENRPr" (Explanation is not required for this problem.)
- Parts that are labeled with "ENRPa" (Explanation is not required for this part.)
- These problems/parts are graded solely on your answers. There is no partial credit and it is not necessary to write down your explanation. Usually, spaces (boxes or cells in a table or rows of dashes) will be provided for your answers. "WACSP" stands for "write your answer(s) in the corresponding space(s) provided".
$>$ When not explicitly stated/defined, all notations and definitions follow ones given in lecture.
For example, the sinc function is defined by $\operatorname{sinc}(x)=(\sin x) / x$; time is denoted by t and frequency is denoted by f. The unit of t is in seconds and the unit of f is in Hz .
$>$ Some points are reserved for accuracy of the answers and also for reducing answers into their simplest forms. Watch out for roundoff error.
> Points marked with * indicate challenging problems.
$>$ Do not cheat. Do not panic. Allocate your time wisely.
> Don't forget to submit your fist online self-evaluation form by the end of today.
\qquad
\qquad

1. (6 pt) [ENRPr] Signals $x(t), y(t)$, and $z(t)$ are plotted below.

Suppose $y(t)=c_{1} x\left(c_{2} t+c_{3}\right)$ and $z(t)=c_{4} x\left(c_{5} t+c_{6}\right)$.
Find the values of the constants $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$, and c_{6} :

$$
c_{1}=
$$

\qquad ,$c_{2}=$ \qquad ,$c_{3}=$ \qquad , $c_{4}=$ \qquad , $c_{5}=$ \qquad , $c_{6}=$ \qquad .
2. (4 pt) [ENRPr] Consider three signals $m(t), r(t)$, and $g(t)$.

The magnitude plots of their Fourier transforms are shown below.

In the time domain, suppose $r(t)=c_{1} m\left(c_{2} t+\sqrt{\pi}\right)$ and $g(t)=c_{3} m(t) \cos \left(c_{4} t\right)$.
Find the values of the constants c_{1}, c_{2}, c_{3}, and c_{4} :

$$
c_{1}=
$$

\qquad , $c_{2}=$ \qquad , $c_{3}=$ \qquad , $c_{4}=$ \qquad .
3. $(1+1+1+1+1=5 \mathrm{pt})$ [ENRPr] Each part below shows the plot of a signal and the corresponding magnitude plot of its Fourier transform. Find the values of the constants (corresponding to the zeroes and the peaks) shown in the plots.
(a)
\qquad
\qquad
4. $(1+1+1+1=4 \mathrm{pt})$ [ENRPr] Consider a cosine pulse of the form

$$
p(t)= \begin{cases}A \cos \left(2 \pi f_{0} t\right), & t_{1} \leq t \leq t_{2} \\ 0, & \text { otherwise }\end{cases}
$$

Suppose its Fourier transform is given by $P(f)=\operatorname{sinc}(\pi f-\pi)+\operatorname{sinc}(\pi f+\pi)$.

Find the values of the constants f_{0}, t_{1}, t_{2}, and A :

$$
f_{0}=\quad, \quad, t_{1}=
$$, $t_{2}=$ \qquad , $A=$ \qquad .

5. (8 pt) [ENRPr] Consider the DSB-SC modem with no channel impairment shown below.

The Fourier transform of the message is plotted below.

Let $A_{1}=1, A_{2}=1$, and $f_{\mathrm{c}}=30 \mathrm{~Hz}$.
a. $\quad(3+4=7$ pt) Plot $X(f)$ and $V(f)$ in the provided space above.
b. (1 pt) Suppose the low-pass filter (LPF) is ideal with frequency response

$$
H_{L P}(f)= \begin{cases}g, & |f| \leq 50 \\ 0, & \text { otherwise }\end{cases}
$$

Find the value of g that makes $\hat{m}(t)=m(t)$.

$$
g=
$$

\qquad .
6. [ENRPr] $\left(3+1^{* *}=4 \mathrm{pt}\right)$ Evaluate the following integrals:
a. $\int_{-\infty}^{\infty} \delta(t-3) d t=$
b. $\int_{-\infty}^{\infty} \delta(2 t) d t=$
c. $\int_{3}^{5} \delta(t-4) e^{j 10 \pi t} d t=$ \qquad d. $\int_{-\infty}^{\infty} \delta\left(t^{2}-3 t+2\right) d t=$ \qquad
\qquad
\qquad
7. [ENRPr] (7 pt) Consider each $g(t)$ defined below.

Let $G(f)$ be its Fourier transform. Plot $|G(f)|$ from $f=-4$ to $f=4 \mathrm{~Hz}$.
a. (2 pt) $g(t)=6 e^{-j 6 \pi t}$

b. (3 pt) $g(t)=6 \cos (6 \pi t)$

c. $(1 \mathrm{pt}) g(t)=6 \delta(t-6)$

d. $\left(1^{*} \mathrm{pt}\right) g(t)=\delta(t-6)+\delta(t-5)$

8. (6 pt) Consider the DSB-SC modem with no channel impairment shown below.

Note that the message itself is also plotted above.
Let $A_{1}=1, A_{2}=1, f_{c}=1 \mathrm{~Hz}$, and $H_{L P}(f)= \begin{cases}g, & |f| \leq 50, \\ 0, & \text { otherwise } .\end{cases}$
a. [ENRPa] (3+2 pt) Sketch $x(t)$ and $v(t)$ from time $t=0$ to time $t=4$.

b. (1* pt) Will $\hat{m}(t)=m(t)$? Don't forget to justify your answer.
\qquad
\qquad
9. $\left(5+1^{*}=6 \mathrm{pt}\right)$ [ENRPr] Consider the DSB-SC modem with no channel impairment shown below.

Let $A_{1}=1, A_{2}=1, f_{\mathrm{c}}=2017 \mathrm{~Hz}$, and $H_{L P}(f)= \begin{cases}1, & |f| \leq 777, \\ 0, & \text { otherwise. }\end{cases}$
For each of the following $m(t)$, find the corresponding $\hat{m}(t)$.

$m(t)$	$\hat{m}(t)$
$m(t)=4 \cos (456 \pi t)$	
$m(t)=4 \cos (3456 \pi t)$	
$m(t)=4 \cos (6666 \pi t)$	
$m(t)=4 \cos (8888 \pi t)$	
$m(t)=4 \cos (12322 \pi t)$	
$m(t)=4 \operatorname{sinc}(1554 \pi t)$	

10. (10 pt) [ENRPr] For each of the following signal $g(t)$, find its (normalized) average power $\left.\left.P_{g} \equiv\langle | g(t)\right|^{2}\right\rangle$. Do not use any approximation.

$g(t)$	$\left.\left.P_{g} \equiv\langle \| g(t)\right\|^{2}\right\rangle$
$\left(1 \mathrm{pt)} g(t)=30 e^{j 30 \pi t}\right.$	
$\left(1 \mathrm{pt)} g(t)=30 e^{j 30 \pi t}+40 e^{j 40 \pi t}\right.$	
$(2 \mathrm{pt}) g(t)=30 \cos \left(30 t+30^{\circ}\right)$	
$\left(2 \mathrm{pt)} g(t)=30 \cos \left(30 t+30^{\circ}\right)+40 \cos \left(40 t+40^{\circ}\right)\right.$	
$(2 \mathrm{pt}) g(t)=50 \cos \left(30 t+30^{\circ}\right)+40 \cos \left(30 t+120^{\circ}\right)$	
$\quad+20 \cos \left(30 t-150^{\circ}\right)$	

\qquad
\qquad
11. (6 pt$)$ Consider a signal $g(t)$ below.

Calculate the following quantities:
a. $(1 \mathrm{pt})\langle g(t)\rangle$
b. $(3 \mathrm{pt})$ energy E_{g}
c. $(1 \mathrm{pt})$ average power P_{g}
d. (1* pt) $\langle G(f), \operatorname{sinc}(2 \pi f)\rangle$ where $G(f)$ is the Fourier transform of $g(t)$
12. (1 pt)
a. (1 pt) Do not forget to submit your study sheet with your exam.
b. Reminder:
i. Make sure that you write your name and ID on every page. (Read the instruction on the cover page.)
ii. The online self-evaluation form is due by the end of today.

