Name	ID	Section 1	Seat No	

Sirindhorn International Institute of Technology Thammasat University

Midterm Examination: Semester 1 / 2017

Course Title:	ECS332 (Principles of Communications)
Instructor:	Asst. Prof. Dr. Prapun Suksompong

October 4, 2017 / 12:00 - 14:00

Instructions:

Date/Time:

	This examination has 6 pages (including this cover page).
>	Conditions of Examination:
	Closed book
	(No dictionary, ☐ No calculator ☑ Calculator (e.g. FX-991) allowed)
	Open book
	✓ Semi-Closed book (1 sheet(s) 1 page both sides of A4 paper note)
	This sheet must be hand-written.
	Do not modify (,e.g., add/underline/highlight) content on the sheet inside the exam room.
	It should be submitted with the exam .
	Other requirements are specified on the course web site. (-10 pt if not following the requirements.)

- **Read** these instructions and the questions carefully.
- Students are not allowed to be out of the examination room during examination. Going to the restroom may result in score deduction.
- > Turn off all communication devices and place them with other personal belongings in the area designated by the proctors or outside the test room.
- > Write your name, student ID, section, and seat number clearly in the spaces provided on the top of this sheet. Then, write your **first name and the <u>last three digits</u> of your ID** in the spaces provided on the top of each page of your examination paper, starting from page 2.
- The back of each page will not be graded; it can be used for calculations of problems that do not require explanation.
- The examination paper is not allowed to be taken out of the examination room. Also, <u>do not remove the staple</u>. Violation may result in score deduction.
- ➤ Unless instructed otherwise, write down all the steps that you have done to obtain your answers.
 - When applying formula(s), state clearly which formula(s) you are applying before plugging-in numerical values.
 - You may not get any credit even when your final answer is correct without showing how you get your answer.
 - o Formula(s) not discussed in class can be used. However, derivation must also be provided.
 - O <u>Exceptions</u>:
 - o Problems that are labeled with "ENRPr" (Explanation is not required for this problem.)
 - o Parts that are labeled with "ENRPa" (Explanation is not required for this part.)
 - These problems/parts are graded solely on your answers. There is no partial credit and it is not necessary to write down your explanation. Usually, spaces (boxes or cells in a table or rows of dashes) will be provided for your answers. "WACSP" stands for "write your answer(s) in the corresponding space(s) provided".
- When not explicitly stated/defined, all notations and definitions follow ones given in lecture. For example, the sinc function is defined by $sinc(x) = (\sin x)/x$; time is denoted by t and frequency is denoted by t. The unit of t is in seconds and the unit of t is in Hz.
- Some points are reserved for *accuracy* of the answers and also for reducing answers into their *simplest* forms. Watch out for roundoff error.
- ➤ Points marked with * indicate challenging problems.
- Do not cheat. Do not panic. Allocate your time wisely.
- ➤ Don't forget to submit your fist online self-evaluation form by the end of today.

1. (6 pt) [ENRPr] Signals x(t), y(t), and z(t) are plotted below.

Suppose $y(t) = c_1 x(c_2 t + c_3)$ and $z(t) = c_4 x(c_5 t + c_6)$.

Find the values of the constants c_1, c_2, c_3, c_4, c_5 , and c_6 :

$$c_1 = \underline{\hspace{1cm}}, c_2 = \underline{\hspace{1cm}}, c_3 = \underline{\hspace{1cm}}, c_4 = \underline{\hspace{1cm}}, c_5 = \underline{\hspace{1cm}}, c_6 = \underline{\hspace{1cm}}.$$

2. (4 pt) [ENRPr] Consider three signals m(t), r(t), and g(t). The magnitude plots of their Fourier transforms are shown below.

In the time domain, suppose $r(t) = c_1 m(c_2 t + \sqrt{\pi})$ and $g(t) = c_3 m(t) \cos(c_4 t)$.

Find the values of the constants c_1, c_2, c_3 , and c_4 :

$$c_1 = \underline{\hspace{1cm}}, c_2 = \underline{\hspace{1cm}}, c_3 = \underline{\hspace{1cm}}, c_4 = \underline{\hspace{1cm}}.$$

3. (1+1+1+1+1 = 5 pt) [ENRPr] Each part below shows the plot of a signal and the corresponding magnitude plot of its Fourier transform. Find the values of the constants (corresponding to the zeroes and the peaks) shown in the plots.

4. (1+1+1+1=4 pt) [ENRPr] Consider a cosine pulse of the form

$$p(t) = \begin{cases} A\cos(2\pi f_0 t), & t_1 \le t \le t_2, \\ 0, & \text{otherwise.} \end{cases}$$

Suppose its Fourier transform is given by $P(f) = \operatorname{sinc}(\pi f - \pi) + \operatorname{sinc}(\pi f + \pi)$.

Find the values of the constants f_0, t_1, t_2 , and A:

$$f_0 = \underline{\hspace{1cm}}, t_1 = \underline{\hspace{1cm}}, t_2 = \underline{\hspace{1cm}}, A = \underline{\hspace{1cm}}.$$

5. (8 pt) [ENRPr] Consider the DSB-SC modem with no channel impairment shown below.

The Fourier transform of the message is plotted below.

Let $A_1 = 1$, $A_2 = 1$, and $f_c = 30$ Hz.

- a. (3+4=7 pt) Plot X(f) and V(f) in the provided space above.
- b. (1 pt) Suppose the low-pass filter (LPF) is ideal with frequency response

$$H_{LP}(f) = \begin{cases} g, & |f| \le 50 \\ 0, & \text{otherwise.} \end{cases}$$

Find the value of g that makes $\hat{m}(t) = m(t)$.

$$g =$$

- 6. [ENRPr] (3+1**=4 pt) Evaluate the following integrals:

b.
$$\int_{-\infty}^{\infty} \delta(2t)dt = \underline{\hspace{1cm}}$$

- b. $\int_{-\infty}^{\infty} \delta(2t)dt = \underline{\qquad}$ d. $\int_{0}^{\infty} \delta(t^2 3t + 2)dt = \underline{\qquad}$

7. [ENRPr] (7 pt) Consider each g(t) defined below.

Let G(f) be its Fourier transform. Plot |G(f)| from f = -4 to f = 4 Hz.

a. (2 pt) $g(t) = 6e^{-j6\pi t}$

b. (3 pt) $g(t) = 6\cos(6\pi t)$

c. (1 pt) $g(t) = 6\delta(t-6)$

d. $(1* pt) g(t) = \delta(t-6) + \delta(t-5)$

8. (6 pt) Consider the DSB-SC modem with no channel impairment shown below.

Note that the message itself is also plotted above.

Let $A_1 = 1$, $A_2 = 1$, $f_c = 1$ Hz, and $H_{LP}(f) = \begin{cases} g, & |f| \le 50, \\ 0, & \text{otherwise.} \end{cases}$

a. [ENRPa] (3+2 pt) Sketch x(t) and v(t) from time t = 0 to time t = 4.

b. (1* pt) Will $\hat{m}(t) = m(t)$? Don't forget to justify your answer.

9. (5+1*=6 pt) [ENRPr] Consider the DSB-SC modem with no channel impairment shown below.

Let
$$A_1 = 1$$
, $A_2 = 1$, $f_c = 2017$ Hz, and $H_{LP}(f) = \begin{cases} 1, & |f| \le 777, \\ 0, & \text{otherwise.} \end{cases}$

For each of the following m(t), find the corresponding $\hat{m}(t)$.

m(t)	$\hat{m}(t)$
$m(t) = 4\cos(456\pi t)$	
$m(t) = 4\cos(3456\pi t)$	
$m(t) = 4\cos(6666\pi t)$	
$m(t) = 4\cos(8888\pi t)$	
$m(t) = 4\cos(12322\pi t)$	
$m(t) = 4\operatorname{sinc}(1554\pi t)$	

10. (10 pt) [ENRPr] For each of the following signal g(t), find its (normalized) average power $P_g = \langle |g(t)|^2 \rangle$. Do not use any approximation.

g(t)	$P_{g} \equiv \left\langle \left g\left(t\right) \right ^{2} \right\rangle$
(1 pt) $g(t) = 30e^{j30\pi t}$	
(1 pt) $g(t) = 30e^{j30\pi t} + 40e^{j40\pi t}$	
(2 pt) $g(t) = 30\cos(30t + 30^\circ)$	
(2 pt) $g(t) = 30\cos(30t + 30^\circ) + 40\cos(40t + 40^\circ)$	
(2 pt) $g(t) = 50\cos(30t + 30^{\circ}) + 40\cos(30t + 120^{\circ})$	
$+20\cos\left(30t-150^{\circ}\right)$	
(2 pt) $g(t) = 30e^{j30t} + 30\cos(30t)$	

11. (6 pt) Consider a signal g(t) below.

Calculate the following quantities:

- a. $(1 \text{ pt}) \langle g(t) \rangle$
- b. (3 pt) energy E_g

- c. (1 pt) average power P_g
- d. $(1* pt) \langle G(f), \operatorname{sinc}(2\pi f) \rangle$ where G(f) is the Fourier transform of g(t)

12. (1 pt)

- a. (1 pt) Do not forget to submit your study sheet with your exam.
- b. Reminder:
 - i. Make sure that you write your name and ID on every page. (Read the instruction on the cover page.)
 - ii. The online self-evaluation form is due by the end of today.